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Using Monte Carlo simulation, we investigate the structural phase behavior of a continuum molecular model
for self-assembling semiflexible equilibrium polymers in two dimensions. Particle-particle interaction is mod-
eled via a Lennard-Jones potential with tunable anisotropic attraction. Depending on the strength of the
anisotropy, we find the formation of reversible networks as well as stiff rodlike aggregates. The phase transition
observed in the presence of the network structures is compared to predictions of the Tlusty-Safran defect
model.
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I. INTRODUCTION

Additional anisotropic interparticle interaction in models
of otherwise simple fluids may lead to rather complex phase
behavior. Anisotropic attractive interaction usually causes the
formation of reversible chains, rings, branched structures, or
networks as in dipolar fluids �1–3�. These aggregates add
complexity to an extent that thus far has prevented the theo-
retical computation or even simulation of complete phase
diagrams.

In the present work, we study, via Monte Carlo �MC�
computer simulation, a model with anisotropic and variable
dispersion attraction between otherwise r−12-repulsive par-
ticles in two dimensions. Structure, dielectric or magnetic
properties, and phase behavior of similar two-dimensional
�2D� dipolar fluids have been investigated via computer
simulation in the past, initially because of the reduced com-
putational effort compared to three dimensions �3D� �e.g.,
�4,5�� and later because of the increased interest in dimen-
sional effects as well as in applications involving monolayers
or thin films �e.g., �6–10��.

Originally the 3D version of the present model was intro-
duced as a computationally inexpensive but effective model
representing stacking amphipilic molecules in solution �11�.
Akin to the monomers in the model, real stacking am-
phiphilic molecules may form linear aggregates, bend-elastic
polydisperse rods, which due to excluded volume interaction
exhibit liquid crystalline phases. In particular, it was shown
that the model potential is a good description for the
isotropic-nematic-hexagonal columnar phase behavior of a
real stacking amphiphile, a triphenylene derivative, whose
phase behavior was studied in great detail by Boden and
co-workers �12�. It was then realized that this potential, with
its tunable anisotropic attraction, may be suitable to study the
connection between essentially lyotropic liquid crystalline
phase behavior in reversibly assembling systems and order-
ing behavior typically observed in dipolar liquids or even in
simple liquids described via Lennard-Jones interactions. In a

subsequent publication, we studied the transition from the
above lyotropic liquid crystalline phase behavior, occurring
for strong anisotropy, to ordinary gas-liquid �GL� phase be-
havior, occurring when the interaction anisotropy is weak
�13�. The 2D version of the model is interesting because it
exhibits, in a certain range of the parameter controlling in-
teraction anisotropy, the formation of reversible networks in
conjunction with dilute-dense phase separation. Here we
map out a large portion of this system’s phase behavior. In
particular, we discuss the above dilute-dense phase separa-
tion in the presence of reversible network structures in rela-
tion to a defect model suggested by Tlusty and Safran �14� as
well as in terms of GL phase separation of equilibrium
polymers.

II. MODEL AND SIMULATION METHODOLOGY

The classical fluid model studied in the following consists
of particles interacting via a modified Lennard-Jones �LJ�
potential �here and in the following we use LJ units�:

uij = 4�rij
−12 − ��f ��rij

−6� , �1�

where

f =
�n� i · r�ij��n� j · r�ij�

rij
2 �2�

�� ,��0�, and n� i is a unit vector assigning an orientation to
each monomer i, i.e., the attractive part of the potential is
anisotropic. Previously we have used this potential to de-
scribe a 3D model fluid �11,13�. Now the position vectors r�ij
are confined to a 2D plane. No such restriction applies to the
orientation vectors n� i, however. The anisotropy factor, �f �, is
unity if both n� i and n� j are parallel or antiparallel to r�ij, the
vector connecting the monomers i and j. If either n� i or n� j or
both are perpendicular to r�ij, then �f �=0. Notice that the mag-
nitude of � controls the angular width of the attraction,
whereas � controls the strength of the attraction.

We note that simulations using the potential in Eqs. �1�
and �2� with different values for � may be mapped onto the
case �=1 using the scaled quantities defined via

Tscal = �−2T �3�

and r�scal=�1/6r� or
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�scal = �−d/6� , �4�

where T and � are the temperature and particle number den-
sity, respectively. This is because the NVT configuration prob-
ability density is invariant under this transformation. Here
d=2, whereas d=3 for the 3D system studied in Ref. �13�. In
order to avoid complicated notation, we use T instead of Tscal

and � instead of �scal from here on �i.e., �=1�.
As before �cf. �13��, the configurational averages pre-

sented in this work are obtained via ordinary METROPOLIS

MC. For a randomly selected monomer, translation or rota-
tion is attempted with equal probability. The maximum trans-
lation and rotation of the monomer are chosen so that about
half the trial moves are accepted by the METROPOLIS crite-
rion, min�1,exp�−�U /T���	, where 	� �0,1� is a random
number, and �U=Unew−Uold is the potential energy differ-
ence between the new and the old configuration. Notice that
the number of monomers, N, the monomer number density,
�=N /V, and the temperature, T, are constants. Monomer-
monomer interactions are cut off at rcut=5.7 using the mini-
mum image convention. Notice that due to the anisotropic
r−6 interaction �for ��0�, we do not employ the usual long-
range corrections. The number of monomers, N, is 256. Ini-
tially we place the randomly oriented monomers on a simple
cubic lattice in a 2D cubic simulation box. The system is
heated into a fluid phase of nonassociated monomers and
subsequently cooled to the desired temperature.

III. RESULTS

Figure 1 shows the GL phase behavior in the T-� plane
for different values of �. Here �=0 corresponds to the GL
coexistence curve in the pure LJ system in 2D with truncated
interaction. GL phase coexistence curves are obtained via the
following procedure. We carry out a large number of NVT
simulations along an isotherm, which allows us to employ
the Maxwell construction to obtain the coexisting densities
for the pure gas and the pure liquid, respectively. Specifi-
cally, we do fit the isotherm data for which the compressibil-
ity is positive using a modification of van der Waal’s equa-
tion of state, i.e., P=NT / �V−Na1�+a0 / �V−Na2�−a0 / �V

−Na3�, where the ai �i=0,1 ,2 ,3� are adjustable parameters
�15�. The coexisting densities are obtained via this equation.
Repeating this procedure for a series of temperatures yields
the GL coexistence curve, which we analyze using the well
known scaling relations, i.e., �L−�G�Ao�t�
 and ��L
+�G� /2��c+Do�t�1−� �t=T /Tc−1� �16�, in conjunction with
the Ising values of the critical exponents �=0 and 

=0.125, to extract the critical point parameters. Notice that
the closed and the open symbols in Fig. 1 correspond to
compression and subsequent expansion along an isotherm,
respectively.

We note that in Ref. �17� the authors study the GL tran-
sition of the 2D LJ fluid with truncated interactions using
MC simulations in conjunction with finite-size scaling tech-
niques. They obtain Tc=0.50�0.02, which is in good agree-
ment with the �=0 curve in Fig. 1 where Tc�0.51. The
excellent agreement is, however, somewhat exaggerated, be-
cause the cutoff in Ref. �17� is smaller, which tends to lower
Tc due to the neglect of attractive interaction. In addition,
using the Ising exponents in the above scaling relations may
not be quite appropriate close to criticality due to the finite-
size truncation of critical fluctuations. Nevertheless, com-
parison with corresponding results for Tc obtained via the
mean-field exponents and including correction terms indi-
cates that the size of the symbols in Fig. 1 is a reasonable
estimate for the error due to the uncertainties in the fit pro-
cedure applied to the coexisting densities.

When � is increased we observe a shift of the critical
point to lower temperatures and densities analogous to the
previous behavior in 3D �cf. Fig. 1 in Ref. �13��. As before,
this may be understood partially by replacing �f �� in the in-
teraction potential by its rotational in-plane average in the
weak interaction limit given by =�−2�d�id� j�f ��
=�−2��d� cos� ��2=�−2����1+�� /2� /��1+� /2�	2. Here
��x� is the Gamma function. Just as in the case of �, we may
now map systems with different � onto a LJ reference sys-
tem, i.e., �=0, via

TLJ = −2T and �LJ = −1/3� . �5�

The mapping applies as long as the anisotropy factor does
not alter the local structure significantly compared to the LJ
system. Combining these two equations yields T
= �TLJ /�LJ

6��6. This is the solid line in Fig. 1. The solid lines
in the two panels of Fig. 2 are the direct comparison of this
scaling, i.e., Eq. �5�, to the simulation results for the critical
quantities. We note that the agreement between the scaling
and the simulation is quite reasonable for small �. �In the
case of the critical temperature the agreement is good for all
� shown in the graph.� The deviations for larger �, which are
very similar in the 3D system �cf. Figs. 1 and 2 in Ref. �13��,
were explained previously as being due to the formation of
reversible chains �cf. below�.

We employ various functions to characterize the structural
properties of our model. The quantity

q�
orient =

1

N
�
i=1

N
1

2
�3 cos2 �i − 1�� , �6�

where �i is the angle between n� i and the axis normal to the
plane to which the particles are confined, is a measure of the
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FIG. 1. Phase behavior in the T-� plane for different � starting
from �=0.0 �top� to �=1.0 �bottom� in steps of 0.1. Closed �open�
diamonds represent coexisting densities obtained upon compression
�expansion�. Dashed lines are the scaling-law approximations used
to determine the GL critical points �squares�. The solid line is the
scaling relation explained in the text.
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average out-of-plane tilt of the n� i. Note that q�
orient=0 if the

particles are noninteracting and q�
orient=−1 /2 if all n� i are par-

allel to the plane. An example is shown in Fig. 3 showing
q�

orient for �=0.5 and 2.0 versus � close to the respective
critical temperature, i.e., T=0.165 and 0.092. At low densi-
ties q�

orient�0, as expected, because there is little interaction
between particles and the n� i are isotropically oriented. As the
density increases, the growing interaction forces the n� i into
the plane. This general behavior is observed for all � consid-
ered here.

Another useful order parameter is

q
orient =

2

N�N − 1�
�
i�j

�2 cos2 ��ij − 1�� , �7�

where ��ij is the perpendicular projection of the angle be-
tween n� i and n� j onto the plane. q

orient is a measure for nem-
atic orientation of the n� i parallel to the plane. Figure 4 shows
q

orient plotted versus � at T=0.092 and �=0.537. Below �
�1 we find isotropic orientation of the n� i parallel to the
plane. Two of the insets are simulation snapshots for �=1.0
and 1.1 showing isotropic equilibrium network structures,
which we did not observe in the 3D case most likely due to
the associated entropy loss �13�. �In 3D we merely find net-
work structures apparently far from equilibrium.� Above �
=1.1 a sudden change occurs. Rather stiff chains appear, sup-
pressing junction formation and favoring alignment due to
excluded volume interaction between them.

The latter behavior is analogous to the 3D system. For
sufficiently large � the formation of rodlike aggregates al-
ready occurs at low concentrations. The stiffness measured in
terms of the persistence length increases with increasing �
�cf. Ref. �11�, where the liquid crystalline phase behavior of
these stiff rodlike aggregates was studied in detail for the 3D
system�. In 2D as in 3D, the excluded volume interaction
induces orientation ordering, which can be explained by an
extension of Onsager’s theory of the isotropic-to-nematic
transition for rodlike colloidal particles �18�.

Hexagonal positional order can be measured via

qhex
pos =

2

N�N − 1�
�
i�j

cos�g�hex · r�ij�� , �8�

where r�ij is the vector connecting two sites i and j, and g�hex
is a basis vector of the reciprocal hexagonal lattice in two
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FIG. 2. Top: GL critical temperature, Tc, vs �; bottom: GL criti-
cal density, �c, vs �. Closed and open symbols have the same mean-
ing as in the previous figure. The solid lines are the power-law
predictions of Eq. �5�. The dashed lines are computed on the basis
of Eqs. �11� and �12�.
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FIG. 3. Out-of-plane tilt q�
orient for �=0.5 �top� and 2.0 �bottom�

vs � close to the respective critical temperature, i.e., T=0.165 and
0.092.
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FIG. 4. q
orient plotted vs � at T=0.092 and �=0.537. The insets

show simulation snapshots obtained for the different � values.
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dimensions. Figure 5 shows qhex
pos versus scaled density, �, for

different �. For small � �here �=0.5� we find a first-order
transition �detected via a clearly discernible jump between
pressure branches along the isotherms� into a hexagonal
crystalline structure, which is governed by the isotropic re-
pulsive interaction. The anisotropic attraction matters little,
as can be seen from the isotropic distribution of the n� i vec-
tors on the hexagonal lattice induced by the repulsive inter-
actions. Notice also that the density value at which qhex

pos

strongly increases, ��0.7, is in accord with the location of
the freezing transition in the 2D LJ system studied previ-
ously �19�. Toxvaerd finds a narrow coexistence region cen-
tered at a number density of 0.8 �0.825� for temperatures
close to 0.5 �1.0�.

At large � �here �=2.0� the particles associate into stiff
linear aggregates forming clusters of aligned and interdigi-
tated chains. This causes qhex

pos to rise more gradually. In ad-

dition, there is competition between the isotropic repulsion
between the individual particles and the interaction between
neighboring chains.

Finally, we introduce

qhex
orient =

2

N�N − 1�
�
i�j

�2 cos2�3��ij� − 1�� , �9�

where ��ij has the same meaning as in Eq. �7�, to detect
hexagonal ordering of the n� i. In order to distinguish hexago-
nal orientation from nematic ordering, it is more useful, how-
ever, to study the quantities

q�
orient = qhex

orient � q
orient. �10�

Notice that q�
orient=0 for isotropic orientation and q�

orient=1 in
the case of hexagonal orientation ordering. On the other
hand, q−

orient=0 and q+
orient=2 in the nematic case. Figure 6, in

analogy to the previous figure, shows q�
orient versus �. In the

top panel, �=0.5 and T=0.165, there is little difference be-
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FIG. 5. Position hexagonal order parameter, qhex
pos, vs density, �.

Top: �=0.5, T=0.165 �inset density �=0.873�; middle: �=1.0, T
=0.092 �inset density �=0.696�; bottom: �=2.0, T=0.092 �inset
density �=0.655�.
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FIG. 6. Order parameters, q� ��: squares, �: circles�, vs den-
sity, �. Top: �=0.5, T=0.165; middle: �=1.0, T=0.092; bottom: �
=2.0, T=0.092. The meaning of filled as compared to hollow sym-
bols is the same as in the previous figures.
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tween q+
orient and q−

orient, indicating hexagonal orientation or-
der above ��0.67. Note that q

orient is zero for isotropic dis-
tribution below ��0.67 as well as for the hexagonally
isotropic orientation �cf. the inset in the top panel of Fig. 5�
causing qhex

orient to increase above ��0.67. In the two lower
panels of Fig. 6, i.e., �=1.0, 2.0 and T=0.092, q+

orient is sig-
nificantly different from q−

orient above a certain concentration.
Notice that q−

orient becomes negative instead being close to
zero. This is because qpos

orient is more sensitive to deviation
from perfect nematic order, in which case it is 1, in compari-
son to q

orient. Overall, however, the splitting indicates nem-
atic orientational order. Comparison of this result to the
alignment transition of 2D hard spherocylinders �20� is not
straightforward, because the aggregates in this work are
polydisperse, soft-repulsive, and, even if � is large, persistent
flexible, but nevertheless worth addressing. The relevant
hard-particle result to compare with is shown in Fig. 6 of
Ref. �20�. The authors find a 2D isotropic-to-nematic transi-
tion in the volume fraction range between 0.6 and 0.4 for
cylinder aspect ratios between 8 and 16. Their spherocylin-
der volume fraction is roughly comparable to our monomer
number density. From Fig. 7 �top� we see that the average
aggregate size for �=2 is around 10 for densities close to 0.2.
For an aspect ratio of 10, Bates and Frenkel predict the
isotropic-to-nematic transition at a volume fraction close to
0.5. Because our aggregates grow with increasing density
�cf. Fig. 7�, we can expect the isotropic-to-nematic transition
to lie in the density range between 0.2 and 0.5. This is accord
with the lowest panel in our Fig. 6.

We conclude thus far that the phase behavior depends
strongly on �. For � roughly smaller than 0.5, the system
behaves like the simple LJ fluid. For larger � up to values
close to 1, we observe association of monomers into revers-
ible networks and a crystalline phase of rodlike aggregates at
high densities. For still larger �, the monomers assemble into
rather stiff linear aggregates growing in length and undergo-
ing orientational ordering driven by their excluded volume
interaction as previously observed in 3D.

The range of � values over which we do observe network
formation is quantified in Fig. 7. The top panel of this figure
shows the number average cluster size, ncl, plotted versus �
at constant density. Two particles are considered neighbors in
a cluster if their distance is less than 0.17rcut. Variation of
this criterion alters ncl quantitatively but not qualitatively.
The peak around �=1 thus represents the formation of large
clusters. At small � the collisions of particles prevents ncl
from vanishing, whereas at large � the observed clusters are
linear rods. The latter are suppressed if ncl is weighted by the
number of junctions as shown in the bottom panel.

IV. RELATION TO THE TLUSTY-SAFRAN TRANSITION

Some years ago, Tlusty and Safran introduced the idea of
defect-induced phase separation in fluids of reversibly as-
sembling monomers capable of forming flexible linear
strands including branch points �14�. They applied this idea
to the special case of dipolar fluids. According to their
model, threefold end-to-end linking of chains of dipolar par-
ticles should lead to the formation of reversible networks.
These networks, according to TS, may be characterized in
terms of the density of the junctions and the density of free
ends. Both junctions and free ends are considered defects
with respective energies �3 and �1. TS develop a model in
which the two types of defects compete and lead to phase
coexistence between an end-rich-junction-poor phase and an
end-poor-junction-rich phase. According to them, a crucial
test of their model in experiment or simulation may be the
observation of dipolar networks in the vicinity of the critical
point in both coexisting phases.

The insets on the left in Fig. 4 show simulation snapshots
obtained for �=1.0 and 1.1 at T=0.092 and �=0.537. The
particles indeed form networks with clearly discernible
threefold junctions. Moreover, Fig. 8 shows analogous snap-
shots at T=0.094 for the two coexisting densities as obtained
according to the Maxwell construction method. We note that
Fig. 8 is in accord with the picture underlying the TS transi-
tion. A more detailed comparison of these simulation results
to the predictions of the TS model therefore appears interest-
ing.

TS find the following critical quantities in terms of the
defect energies:

Tc
TS =

�1 − 3�3

ln�27/4�
, �11�

ln �c
TS = −

�1 ln�9/2� − �3 ln�2�
�1 − 3�3

, �12�

0.0 0.5 1.0 1.5 2.0 Ν

10

20

30

40

50
ncl

0.5 1.0 1.5 2.0 Ν

1000

2000

3000

4000

njncl

(b)

(a)

FIG. 7. Top: number average cluster size, ncl, plotted vs �. The
density is constant �open squares: �=0.202; solid squares: �
=0.134�. For ��1, the temperature is the GL critical temperature at
the corresponding �; for ��1, where no GL critical point is ob-
served, the temperature is 0.092. Bottom: corresponding number of
network junctions, nj, times ncl vs �.
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ln Pc
TS = −

�1 ln�81/2� − �3 ln�32�
�1 − 3�3

. �13�

Note that �c
TS is the critical volume fraction related to the

critical number density by �c
TS=b−1�c

TS, where b is the par-
ticle volume. In order to compare this to our results, we need
to estimate �3 and �1 based on our model potential. We con-
sider the interaction between two particles at fixed orienta-
tion, i.e., u=4�r−12−�r−6�. The optimized potential energy
follows via �du /dr�r=rmin

=0, which yields umin=−�2. For par-
allel or antiparallel orientation we have umin=−�2. The po-
tential energy of a reversible chain consisting of n bonds
may thus be approximated by −n�2. Cutting the chain at a
particular bond creates two free ends, i.e., 2�1�−�n−1��2

− �−n�2�=�2. Similarly we may estimate �3 by cutting two
bonds, thus creating three pieces of chain, and subsequent
fusion of three of the ends, i.e., �3�−�n−2��2

− �−n�2�−3�2�3 /4�2�= �2−3�3 /4�2���2. The last term, the
fusion energy, assumes three particles at the corners of an
equilateral triangle whose n�-vectors are in the plane of the

triangle and forming 30 �or 150� degree angles with the sides
of the triangle.

According to this estimate, Tc
TS��2 in agreement with

Eq. �3�. The particle volume b for our model may be esti-
mated via b=��ro /2�2= �� /4����−1/3, where ro is the solu-
tion of ro

−12−�ro
−6=0. Notice that  is computed above.

Again we obtain �c
TS��1/3 as required by Eq. �4�. The

dashed lines in Figs. 2 and 9 show the final result of this
mapping of the TS critical parameters onto our model. When
� is roughly smaller than 0.5, we do not find network forma-
tion in the simulation and thus we do not expect the TS
theory to apply. However, for larger � up to ��1.1, where
the behavior changes completely, we do find network forma-
tion. The fact that simple scaling using rotationally averaged
attraction leads to far better agreement with the simulation
results for the critical parameters in the entire range of �
values strongly suggests that the competition between free
ends and junctions is not the driving force behind phase
separation in the present system.

Figure 9 shows the critical compressibility factor,
Pc / ��cTc�, as obtained from the simulated coexistence curves
in 2D and 3D. A comparison of this quantity for the 2D LJ
system ��=0� can be made based on Ref. �21�, where the
authors compile the critical quantities for this system as ob-
tained previously by a number of groups. The range is
roughly 0.19� Pc / ��cTc��0.25. Our own data agree with
this if they are represented by a straight line fit. A straight
line fit also shows a decrease of Pc / ��cTc� with increasing �.
Again the dashed line is the result obtained via the TS
method. This curve has a maximum around ��0.5 �cut off
in the figure� above which it drops steeply.

One may argue at this point that the above computation of
the TS defect energies is rather rough. This together with the
somewhat fuzzy range of � values for which network forma-
tion is observed may account for some of the overall discrep-
ancy between the TS predictions and the simulation results.
However, there is still another reason suggesting a driving
force behind phase separation other than the junction-free
ends competition underlying the TS theory.

Notice that the simulation data in Figs. 2 and 9 show a
rather smooth dependence on � from �=0, where the systems
undergoes normal GL phase separation, to �=1, where the
nature of the transition may be different. Because the TS
mechanism for phase separation is very different from GL

(b)

(a)

FIG. 8. Simulation snapshots obtained for �=1.0 at T=0.094 on
the coexistence curve �top: �=0.048; bottom: �=0.284�.
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FIG. 9. Pc / ��cTc� vs � �circles: 3D; squares: 2D�. The dashed
line is the result obtained according to the TS theory. The solid line
is the theory developed in Ref. �13�.
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phase separation in simple liquids, we would expect a dis-
cernible discontinuity in the Tc versus � and �c versus �
curves. This is not the case. We add that in a recent computer
study of monolayers of dipolar particles, Duncan and Camp
also do not find evidence for a TS transition under equilib-
rium conditions �9�.

V. RELATION TO GL PHASE BEHAVIOR OF LINEAR
CHAINS

Recently we studied the 3D version of this model �13�.
Figures 1 �top panel� and 2 �top and middle panel� in Ref.
�13� show results corresponding to the 2D results in Figs. 1
and 2. In 3D and in 2D the dependence of the GL critical
point on � is qualitatively the same. In particular, the devia-
tions of the simulation results from the scaling approxima-
tions based on rotationally averaged attraction are qualita-
tively the same in both dimensions. Notice that Tc�3D� is
roughly twice Tc�2D� due to the roughly doubled number of
nearest neighbors �doubling of attractive interaction� in 3D
as compared to 2D. The critical densities are roughly the
same in 2D and in 3D, because the particle size is indepen-
dent of dimension. Here we argue along the lines of the van
der Waals theory, which of course is a crude description, as
the dependence of the critical compressibility factor on di-
mension in Fig. 9 illustrates.

In 3D, we were able to explain the deviation of Tc and �c
from the scaling approximation �here Eqs. �5�� in terms of
the theory of lattice polymer thermodynamics developed by
Flory and co-workers many years ago �22�, but now ex-
tended by terms in the free energy accounting for reversible
assembly of monomers into polydisperse chains �13,23�. For
instance, according to Flory, Pc / ��cTc��n−1 in the case of
linear polymers of length n �for large n�. In the case of re-
versible chains, n is replaced by the average length, which in
turn is n=1 /2+1 /2�1+4�solute exp�−�o�. Notice that here n
is the number average size, �solute is the monomer volume
fraction, and �o is the free enthalphy contributed �in units of
T� per reversible monomer-monomer contact along the
chain. The latter may be tied to � as shown in Ref. �13�. In
general, n increases as � decreases �cf. Fig. 5 in Ref. �13��.
Using the theory explained in Ref. �13�, we compute the
solid line in Fig. 9, i.e., the 3D compressibility factor is
reproduced quite reasonably �24�. Thus we conclude that the

decrease of the critical compressibility factor in Fig. 9 is
consistent with the formation of reversible chains near criti-
cality. Unfortunately, the Flory lattice theory, the basis of our
theoretical model of reversibly assembling polymers, is not
sensitive to dimension—a general feature of mean-field theo-
ries. In addition, it does not include non-chain-like aggre-
gates. Nevertheless, combining the similarity of the 2D to the
3D results with the theory linking the observed dependence
of GL critical parameters to the formation of reversible
chains in 3D, we conclude that the �-dependent reversible
aggregation is responsible for the analogous behavior in 2D
rather than a novel mechanism due to competition between
cross-links and free ends in a network.

VI. CONCLUSION

We have studied the phase behavior of a model fluid with
adjustable anisotropic inter-particle attraction in two dimen-
sions extending a previous computer simulation study of the
same model in 3D. The anisotropy of attraction may be con-
trolled by a parameter �. If � is increased from zero, where
the particles interact via a truncated LJ potential, the attrac-
tion is increasingly constrained to a narrowing cone of ori-
entations. This causes the reversible formation of chains and,
in addition in 2D, networks. For small � the system behaves
LJ-like, whereas for large � the chainlike aggregates interact
mainly via excluded volume leading to nematic alignment
and crystalline packing at high densities. In the intermediate
� range, we find the formation of network structures in 2D.
Similar network formation has been observed earlier in the
2D dipolar hard-sphere system �10,25,26�. In this system, the
occurrence of ringlike clusters and subsequent contact for-
mation between clusters upon increasing density appears to
be the dominant type of network formation rather than the
formation of Y-shaped junctions observed here. In Ref. �10�,
the authors in particular discuss the possibility of a phase
transition from disconnected clusters to networks of span-
ning clusters. In the present work, we have attempted to de-
scribe the observed shift of the critical parameters with � on
the basis of a defect theory due to Tlusty and Safran. It
appears, however, that the observed � dependence of the
critical parameters is due to the formation of reversible ag-
gregates, particularly chains or chain segments, rather than to
the competition between cross-links and free ends in a
network.
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